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Abstract
Eye tracking provides direct, temporally and spatially sensitive measures of eye gaze. It can capture visual attention patterns 
from infancy through adulthood. However, commonly used screen-based eye tracking (SET) paradigms are limited in their 
depiction of how individuals process information as they interact with the environment in “real life”. Mobile eye tracking 
(MET) records participant-perspective gaze in the context of active behavior. Recent technological developments in MET 
hardware enable researchers to capture egocentric vision as early as infancy and across the lifespan. However, challenges 
remain in MET data collection, processing, and analysis. The present paper aims to provide an introduction and practical 
guide to starting researchers in the field to facilitate the use of MET in psychological research with a wide range of age groups. 
First, we provide a general introduction to MET. Next, we briefly review MET studies in adults and children that provide new 
insights into attention and its roles in cognitive and socioemotional functioning. We then discuss technical issues relating to 
MET data collection and provide guidelines for data quality inspection, gaze annotations, data visualization, and statistical 
analyses. Lastly, we conclude by discussing the future directions of MET implementation. Open-source programs for MET 
data quality inspection, data visualization, and analysis are shared publicly.
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Introduction

Eye movements provide a window into one’s perception, 
cognition, and visually guided behavior. Eye movements 
can indicate the deployment of visual attention (Henderson, 
2003). Attention, in turn, acts as a processing mechanism 
that filters out excessive information from the environment 
by biasing selection based on the individual’s current goals 
(Desimone & Duncan, 1995) and affective states (Todd 
et al., 2012). Visual experiences influence downstream cog-
nition, learning, action, and affect (Crick & Dodge, 1994). 
Controlled laboratory experiments often study visual atten-
tion in isolation. However, in everyday life, visual attention 
is closely linked to the individual’s ongoing behavior and 
experiences of the physical and social environments (Fran-
chak, 2020a; Hayhoe & Rothkopf, 2011). While we have 
gained tremendous insights from screen-based tasks, with-
out studying attention in situ, we can only approximate how 
attention, action, and social information dynamically influ-
ence each other in real-time and in real-life environments.
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Head-mounted, or mobile eye tracking (MET), records 
eye movements embedded in an individual’s free-flowing 
behaviors as they interact with the environment. The tech-
nology has been pioneered in adults since the early 1900s 
(Land, 2006). MET systems have become more portable and 
robust with technological advancement. This recent develop-
ment facilitates research into attention during active visual 
exploration (Ballard et al., 1997), especially in infants and 
young children (Franchak, 2017; Franchak, 2019). MET typ-
ically consists of a scene camera that captures the wearer’s 
first-person view and one or two eye cameras that support 
monocular or binocular eye tracking, respectively. The MET 
system records the wearer’s gaze direction and maps the 
three-dimensional gaze point to the two-dimensional space 
of the scene camera, allowing researchers to visualize the 
point of gaze overlaid on the scene camera recording (Mac-
innes et al., 2018).

The use of MET yields several key advantages. Compared 
to video recordings, MET provides a more proximal, tem-
porally and spatially sensitive measure of attention from the 
first-person perspective (Franchak, 2019; Franchak, 2020b; 
Fu & Pérez-Edgar, 2019; Pérez-Edgar et al., 2020). MET 
captures rich micro-longitudinal data by sampling looking 
locations within self-generated behavior for extended peri-
ods of time (see Data visualization section). MET data can 
then be used to probe within-person changes of attention 
over time and capture the moment-to-moment dynamics 
between the environmental inputs, individuals’ attention, 
and behavior (see Data analysis section). Hence, MET stud-
ies may provide new understandings of human cognition 
operating within the individual’s active motor and social 
behaviors (Ballard et al., 1997; Gibson, 1979; Yoshida & 
Burling, 2011).

The present paper provides an introduction and practi-
cal guide for MET data collection, processing, and analytic 
methods to new researchers in the field. Existing literature 

has highlighted the utility and advantages of MET (Fran-
chak, 2019, 2020a; Pérez-Edgar et al., 2020; Yoshida & 
Burling, 2011), technical challenges (Hessels, Niehorster 
et al., 2020b; Niehorster et al., 2020; Valtakari et al., 2021), 
and provided practical guides in MET data collection and 
data quality inspection (Franchak & Yu, 2022; Hooge et al., 
2023; Niehorster et al., 2023; Slone et al., 2018). The pre-
sent paper complements and extends existing method papers 
by providing a review of current MET methodologies and 
practical guidance that are applicable to MET research that 
covers a wide age span from infancy to adulthood. We will 
briefly review studies that illustrate the utility of MET as an 
integral tool for understanding attentional processes in loco-
motion, learning, and social interactions in adults, children, 
and infants in the "The utility of MET technology" section. 
This is followed by recommendations on MET data collec-
tion in the "MET data collection considerations" section, 
data quality assessment in the "MET data quality inspec-
tion" section, gaze annotation methods in the "Gaze annota-
tions" section, visualization of looking events in the "Data 
visualization" section, and data analysis approaches in the 
"Data analysis" section. Methods introduced in these sec-
tions are applicable to MET research with adults, children, 
and infants. Finally, we will discuss remaining challenges 
and future directions in the "Future directions" section. In 
addition to reviewing existing tools, the present paper also 
provides computer programs and example data for demon-
strating methods for data quality assessment, data visualiza-
tion, and data analysis (https://​github.​com/​xiaox​uefu/​MET_​
metho​ds). The example MET data were collected from 
two research projects: the iTRAC study that enrolled 5- to 
7-year-olds and the ACTION study that involves infants at 
4 and 8 months of age. Descriptions of the two projects are 
provided in the GitHub repository. Table 1 also lists infor-
mation on open-access MET data and data analytic tools 
provided by studies cited in the present paper.

Table 1   Open-access data and tools cited

Name Authors URL

Mobile eye tracking data
Gaze-in-Wild Franchak et al. (2018) https://​nyu.​datab​rary.​org/​volume/​135

Kothari et al. (2020) https://​www.​cis.​rit.​edu/​~rsk39​00/​gaze-​in-​wild/
Matthis et al. (2018) https://​doi.​org/​10.​6084/​m9.​figsh​are.​61308​50.

Glasses Test Niehorster et al. (2020) https://​github.​com/​dcnie​ho/​Glass​esTes​tCode​Data
Data Quality Assessment
GlassesValidator Niehorster et al. (2023) https://​github.​com/​dcnie​ho/​glass​esVal​idator
Gaze Annotations
GazeCode Benjamins et al. (2018) https://​github.​com/​jsben​jamins/​gazec​ode
ROI Coder Franchak (unpublished) https://​github.​com/​JohnF​ranch​ak/​roi_​coder
Eye Tracker Analysis Jongerius et al. (2021) https://​osf.​io/​4uy35/?​view_​only=​785a0​11774​

cf4c4​f8c5e​4608b​34a2a​38

https://github.com/xiaoxuefu/MET_methods
https://github.com/xiaoxuefu/MET_methods
https://nyu.databrary.org/volume/135
https://www.cis.rit.edu/~rsk3900/gaze-in-wild/
https://doi.org/10.6084/m9.figshare.6130850
https://github.com/dcnieho/GlassesTestCodeData
https://github.com/dcnieho/glassesValidator
https://github.com/jsbenjamins/gazecode
https://github.com/JohnFranchak/roi_coder
https://osf.io/4uy35/?view_only=785a011774cf4c4f8c5e4608b34a2a38
https://osf.io/4uy35/?view_only=785a011774cf4c4f8c5e4608b34a2a38
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The utility of MET technology

MET as a tool to examine cognition embodied 
in individuals’ sensorimotor systems

MET research has provided empirical evidence for embod-
ied cognition (Ballard et al., 1997; Yoshida & Burling, 
2011). The ecological approach suggests that visual atten-
tion operates in conjunction with a whole-body locomo-
tor system (Gibson, 1979). Research has historically 
studied attention and active locomotor behavior as two 
separate, encapsulated systems. MET opens the oppor-
tunity for examining the “what” and “when” of visual 
attention during sequences of actions carried out dur-
ing everyday activities (Hayhoe, 2017, 2018; Hayhoe & 
Rothkopf, 2011) or other fieldworks (e.g., fly a plane: 
Socha et al., 2022; perform a clinical procedure: Wright 
et al., 2022). MET research in adults reveals the tight spa-
tial and temporal coupling between attention, action, and 
task demands (Hayhoe et al., 2003; Land et al., 1999). For 
example, when adults walk on complex terrain, they gaze 
at the point at which they would place their foot two steps 
ahead (Domínguez-Zamora & Marigold, 2019; Marigold 
& Patla, 2007; Matthis & Fajen, 2014), and adjust the 
timing of fixations to match the difficulty of foot place-
ment. When walking over flat terrain, adults can navigate 
obstacles without the need to fixate (Franchak & Adolph, 
2010). When adults navigate crowds, participants avoid 
eye contact as instructed by orienting both their heads and 
eyes towards the floor (Hessels et al., 2022). Hence, the 
synergistic eye-body coordination is constantly adjusted in 
real time based on in-the-moment behavioral goals.

MET recordings in infants reveal that the development 
of gross motor (e.g., posture) and fine motor (e.g., manual 
object manipulation) skills shape infant attentional behav-
ior. For example, crawling infants (13-month-olds) look 
mostly at the floor, whereas age-matched infants who walk 
can see more distal objects and people (Kretch et al., 2014; 
Luo & Franchak, 2020). Moreover, infants (12-month-
olds) look more at their caregivers’ faces when upright and 
sitting, compared to when in a prone position (Franchak 
et al., 2018). As infants’ fine motor skills mature, manual 
object explorations generate more salient and variable 
object images in the visual field (15–25 months). Visual 
inputs in the real world are maintained in infants (12–24 
months) by consistently aligning the head and eyes while 
looking at objects (Borjon et al., 2021). The visual inputs 
facilitate learning of word-object associations (Bambach 
et al., 2018; Slone et al., 2019; Yu & Smith, 2012). These 
studies collectively underscore the importance of study-
ing visual attention within the developing sensorimotor 
system.

MET as a tool to capture social attention embedded 
in naturalistic interactions

The “second-person” or “person-centered” perspective 
emphasizes that social attention needs to be examined in the 
context of the individuals’ interaction with social partners 
(Fu & Pérez-Edgar, 2019; Pérez-Edgar et al., 2020; Redcay 
& Schilbach, 2019; Risko et al., 2012). In real-life social 
interactions, eye gaze serves the dual function of both col-
lecting and communicating information (Gobel et al., 2015; 
Nasiopoulos et al., 2015). By recording visual attention 
during real-time social behaviors, MET is a unique tool for 
understanding the dual function of eye gaze. For example, 
MET studies found that adults tend to avoid directly looking 
at strangers when engaging in first-person social interac-
tions, compared to being passive observers (Foulsham et al., 
2011; Freeth et al., 2013; Laidlaw et al., 2011). The behav-
ior might be driven by the implicit understanding of social 
customs and the effect of gaze in delivering social informa-
tion. However, there are cultural differences in social atten-
tion, such that East Asians engaged in more mutual gaze 
than Western Caucasians during face-to-face conversations 
(Haensel et al., 2022). Adults also utilize eye gaze as social 
communicative cues. For example, when verbal instruc-
tions for a task activity are ambiguous, participants are more 
likely to follow the gaze of their social partners compared to 
when given unambiguous verbal instructions (Macdonald & 
Tatler, 2013). Hence, social attention is context-driven and 
goal-directed.

MET is also an indispensable tool for understanding the 
coupling between attention and affective behavior. Vallorani 
et al. (2022) showed that among 5- to 7-year-olds, a child’s 
expression of positive affect predicts a greater likelihood of 
looking at peers during dyadic free play. Social attention, in 
turn, is linked to a greater likelihood of the child expressing 
positive affect when the peer is expressing neutral affect. 
Existing MET studies in adults and children underscore the 
importance of studying social attention nested in the indi-
viduals’ affect and social experiences (Fu & Pérez-Edgar, 
2019; Pérez-Edgar et al., 2020). One application of measur-
ing social attention embedded in real-life interactions is to 
study threat-related attention bias linked to risk for inter-
nalizing symptoms (Fu & Pérez-Edgar, 2019). Behavioral 
inhibition, a temperament profile characterized by height-
ened vigilance and reactivity to novelty in infancy and social 
reticence in childhood, is a robust risk factor for anxiety 
disorders (Chronis-Tuscano et al., 2009; Clauss & Blackford, 
2012). During a relatively benign social encounter, children 
(partially overlapping sample as Vallaroni et al., 2022) with 
high behavioral inhibition show greater attention avoidance 
towards an adult stranger (Fu et al., 2019). Moreover, chil-
dren with an attention profile characterized by avoidance 
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to an adult stranger exhibit greater internalizing symptoms 
even when controlling for their behavioral inhibition level 
(Gunther et al., 2022). When encountering higher social 
threat (i.e., an adult wearing a “scary” mask), children with 
high behavioral inhibition showed more attention toward 
the stranger (Gunther et al., 2021). Together, these findings 
highlight the importance of studying threat-related attention 
in the context of naturalistic interactions, as the nature of 
threat context can influence attention patterns.

Moreover, developmental scientists have used MET to 
study how learning emerges from free-flowing interactions 
in infant–caregiver dyads. Joint attention (JA) is a key con-
duit for language learning. JA reflects children’s ability to 
coordinate attention with their social partners, creating a 
critical context for language acquisition (Suarez-Rivera 
et al., 2022; Tomasello & Farrar, 1986). Traditional labora-
tory tasks assess infants’ ability to achieve JA by focusing on 
visual attention patterns, encompassing face looking, gaze 
following, and object looking (Brooks & Meltzoff, 2005; 
Tomasello & Farrar, 1986). In contrast, through studying 
infant–parent free-flowing play behaviors, MET studies in 
infants and toddlers (9–48 months) show that it is the hand-
eye coordination between infants and caregivers, not infants’ 
visual attention alone, which contributes to the formation of 
JA (Abney et al., 2020; Yu & Smith, 2013, 2017a, 2017b; 
Yurkovic-Harding et al., 2022). Parents are more likely to 
name and touch the toy during bouts of JA, and the multi-
modal behavior increases infants’ sustained attention to the 
objects and facilitates real-time learning of the word-referent 
association (Chen et al., 2021; Suarez-Rivera et al., 2019; 
Yu & Smith, 2012). As infants actively interact with the 
environment through sensorimotor (e.g., hand–eye) coordi-
nation, they create idiosyncratic inputs for learning (Smith 
et al., 2018). Hence, MET provides a tool for understand-
ing the formation and characteristics of the environmental 
inputs from the first-person perspective, and the downstream 
impacts of these inputs on cognitive development (Yoshida 
& Burling, 2011).

MET data collection considerations

Decisions on eye-tracker hardware and MET task proce-
dures are driven by researchers’ requirements regarding 
(1) participant characteristics, including age, (2) freedom 
of movement, and (3) data collection environment, such as 
in controlled laboratory settings or less controlled indoor 
or outdoor environments (e.g., homes and streets). While 
the hardware choices and study procedures may vary, a 
common goal for eye-tracking research is to safeguard data 
quality, defined as the reliability, validity, and availability 
of usable data (Hessels & Hooge, 2019; Niehorster et al., 

2018). Disruptions of pupil detection (due to factors such 
as ambient lighting, headset slippage, and eye makeup) and 
the alignment of the headset relative to the participant’s head 
(due to movement and slippage) negatively impact data qual-
ity (Hessels et al., 2022; Niehorster et al., 2020).

Calibration is a critical procedure for obtaining high data 
quality. The commonly used video-based pupil-corneal 
reflection (P-CR) eye tracker records the relative locations 
of the pupil and corneal reflection. Calibration involves 
mapping the recorded pupil and corneal reflection locations 
when the gaze was directed to the calibration targets to the 
spatial locations of the calibration stimuli (Blignaut et al., 
2014). Poor calibration reduces the validity of MET data. 
Furthermore, care needs to be taken to ensure that experi-
mental manipulations do not create differential impacts 
on MET data quality between conditions (Hessels et al., 
2022). While calibration-free MET devices are commer-
cially available (e.g., Tonsen et al., 2020), we recommend 
researchers evaluate different calibration options based on 
participant age and experiment needs. We include informa-
tion on calibration here, as gaze-estimation accuracy of the 
calibration-free MET device is yet to be published for chil-
dren and infants. This section will discuss hardware setup, 
calibration, and study design issues in example research 
scenarios based on study considerations on (1) participant 
characteristics, (2) freedom of movement, and (3) environ-
ment. Additional guidance on MET setups is provided in 
Valtakari et al. (2021) and Slone et al. (2018) for adult and 
child participants, respectively.

MET data collection with adults and older children 
in controlled laboratory environments

Collecting MET data in older participants in controlled envi-
ronments allows for greater flexibility in hardware setups 
given the minimal customization required for “out-of-the-
box” eye-trackers and participants’ better tolerance and abili-
ties to cooperate (compared to infants and toddlers). One 
main consideration that determines MET setups is the par-
ticipants’ freedom of movement. Published studies in par-
ticipants above 5 years old commonly connect the headset 
directly to a computer device (e.g., laptop) for data record-
ing and storage (e.g., 5–69 years old: Fu et al., 2019; Hes-
sels et al., 2022; Matthis et al., 2018; Woody et al., 2019). 
This setup can be burdensome for the participants, and the 
restrained movement can affect eye–body coordination, a 
key construct of interest in many MET studies. Newer setups 
involve connecting the headset to a lightweight smartphone 
device, which functions as a recording and local storage 
device (Nasrabadi & Alonso, 2022; Tonsen et al., 2020).

MET research with adults and children who can be 
instructed to fixate calibration targets has greater flexibility 
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in calibration methods. In a typical calibration session, par-
ticipants are asked to look at calibration points displayed on 
a screen, comparable to screen-based eye tracking (SET) 
calibration (e.g., Fu et al., 2019; Kothari et al., 2020) or a 
calibration marker fixed on a naturalistic object (e.g., Nie-
horster et al., 2020; Woody et al., 2019). Studies in this age 
range may employ online calibration, where the mapping 
between pupil-corneal-reflection locations and the locations 
of the calibration points take effect immediately. Offline cali-
bration performs the spatial mapping after data collection. 
Hence, the advantage of online calibration is allowing for 
real-time data monitoring and providing the opportunity for 
just-in-time recalibration.

We recommend a few best practices for performing both 
online and offline calibration accuracy:

1)	 Display calibration targets at a distance comparable 
to the distance between the participant and primary 
areas of interest (AOIs). AOIs refer to the targets of 
the participants’ looks that will be annotated for data 
analysis (also see the section “Gaze annotations”). Par-
allax error is a gaze estimation error introduced when 
the distance between the wearer and the AOI (i.e., the 
fixation plane) is different than the distance between 
the wearer and the calibration target (i.e., the calibra-
tion plane). This causes an offset between the true gaze 
location and the estimated gaze location on the fixation 
plane and the scene camera coordinate space, which bias 
the experimenter’s identification of actual gaze location 
(Mardanbegi & Hansen, 2012; Valtakari et al., 2021). 
Hence, it is recommended that the calibration targets be 
presented at the same approximate location of the AOIs. 
If participants will engage in various viewing distances 
during the experiment, it is best to perform multiple cali-
bration sessions to accommodate the distance changes or 
employ a mid-range distance if there is a lack of experi-
mental control on the distance change.

2)	 Present multiple calibration targets that cover the 
participant’s entire field of view (FOV). We use FOV 
here to refer to the view of the participants captured by 
the scene camara. The FOV tends to be smaller than 
the participant’s visual field, and it is not necessarily 
equivalent to the reported FOV specifications of a given 
MET model, depending on factors such as viewing dis-
tance, participant’s posture, and the camera angle. Five 
or more calibration targets can be presented across the 
participant’s FOV, comparable to SET. This step is to 
ensure that calibration accuracy is maintained from the 
center of the FOV to peripheral locations. The experi-
ment should verify that participants do not turn their 
heads to orient toward peripheral targets, which will 
result in target clustering in the center of the FOV.

3)	 Perform a validation procedure (i.e., calibration 
check) at the beginning and end of the experiment 
session, and after any MET headset movement. A 
validation procedure is conducted by directing partici-
pants to look at specific target locations. Similarly, the 
targets should be presented in a location that is com-
parable to the location of the AOIs. Conducting mul-
tiple calibration checks during the experiment helps to 
ensure that the data quality is maintained throughout 
the experiment. The headset slippage issue can be effec-
tively prevented through monitoring online calibration 
accuracy and recalibrating to correct accuracy drift 
(Niehorster et al., 2020). The validation procedure also 
provides additional calibration points for corrections in 
offline calibrations. For example, if the eye gaze cap-
ture is perturbed by headset movement, the experimenter 
needs to adjust the eye camera and perform calibration 
checks. The points of gaze obtained post-adjustment can 
be used to update the spatial mapping in offline cali-
bration. Finally, performing per-participant validation 
checks allows reporting of the accuracy metric (see the 
section “Accuracy”), which can also be used as a control 
variable in analyses (Franchak & Yu, 2022).

MET data collection in infants and toddlers

Existing MET studies with infants and toddlers (4–26 
months old) in laboratory (e.g., Franchak et  al., 2011; 
Schroer & Yu, 2023; Yu & Smith, 2012, 2017a) and home 
settings (Bradshaw et  al., 2023) have largely followed 
a common set of equipment setup and calibration proce-
dures. The headset needs to be stably placed on the head 
to minimize the negative effect of slippage on data quality 
(Niehorster et al., 2020). Researchers may customize the 
“out-of-the-box” eye tracker by affixing it on a tailored head-
band, cap, or beanie for secure placement. For young infants 
(< 8 months), we recommend utilizing a series of headsets 
that can accommodate different head sizes, head shapes, and 
hair textures. Some headsets can be connected to a smart-
phone to increase children’s mobility (Schroer & Yu, 2023).

It is challenging to instruct infants and toddlers to follow 
calibration points. Hence, MET studies in this age group 
commonly implement offline calibration. The calibration 
procedure can be integrated into a child-experimenter play 
session during which the experimenter presents engaging 
calibration targets (e.g., toys and/or laser points) at vari-
ous locations across the child’s FOV. The calibration target 
distance from the child and the child’s posture should match 
the specifications for the formal data collection. Researchers 
should closely monitor the eye image recording throughout 
data collection. Additional calibration(s) are required if the 
eye image capture is perturbed by headset movement. If the 
study involves interactions with an adult partner, such as a 
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caregiver, the social partner can be trained in calibration 
target presentations to minimize disruptions during natural-
istic interactions. After data collection, a trained researcher 
marks the calibration target locations on the scene camera 
recording where the child’s point of gaze is clearly identifi-
able and directed to the calibration target. An algorithm is 
then applied to map the pupil and corneal reflection loca-
tions with the specified calibration target locations (e.g., 
Hassoumi et al., 2019). The manual identification of points 
of gaze and automated mapping procedure are run iteratively 
to establish satisfactory calibration (Slone et al., 2018).

MET data collection outside controlled laboratory 
environments

MET studies have been conducted in naturalistic outdoor 
(adults: Foulsham et al., 2011; Matthis et al., 2018) and 
indoor environments (infants at homes: Bradshaw et al., 
2023; adults in an event hall: Hessels et al., 2022; a child 
in a museum: Jung et al., 2018; adults in a clinical setting: 
Wright et al., 2022). Factors that can then compromise MET 
data quality include a lack of control over ambient lighting, 
locations of the target objects (i.e., AOIs), and insufficient 
calibration procedures (Evans et al., 2012; Hessels et al., 
2022). For example, infrared light from the sun when out-
doors interferes with pupil and corneal reflection tracking. A 
remedy is to provide participants with an infrared-blocking 
visor (Matthis et al., 2018). The distance between the par-
ticipant and different AOIs can greatly vary. This is both 
an advantage (greater visual selection) and a disadvantage 
(greater analytic complexity) of MET. In tasks where partici-
pants tilt their heads down, AOIs that are close to the partici-
pant and lower than eye level are captured in the lower part 
of the scene camera view, while farther objects are captured 
in the higher part of the scene camera view (Slone et al., 
2018). Hence, appropriate scene camera positioning needs to 
be determined to ensure it can capture all AOIs in the study.

Offline calibration can be advantageous in less-controlled 
environments, given real-time data monitoring might not be 
possible. Offline calibration offers researchers the opportu-
nity to update the spatial mapping between pupil and corneal 
reflection locations and the points of gaze directed to the 
calibration targets after pupil capture is altered by slippage, 
posture changes, or lighting. The emerging calibration-free 
MET technology is also promising for maintaining accept-
able accuracy in outdoor settings (Tonsen et al., 2020).

MET data quality inspection

Eye-tracking data quality is quantified by accuracy, preci-
sion, and availability of usable data (or data loss) (Hessels 
& Hooge, 2019). Accuracy is operationalized as the distance 

(spatial offset) between the gaze location detected by the eye 
tracker and the actual gaze location measured in degree of 
visual angle. Precision indexes the level of noise in the eye-
tracking data that produces spatial variability between gaze 
samples. Accuracy and precision provide an index of validity 
and reliability of the eye-tracking data (Hessels & Hooge, 
2019). Data loss can be calculated using the number of valid 
gaze data points recorded and the expected number of sam-
ples based on the specified sampling frequency (Hessels & 
Hooge, 2019; Hooge et al., 2023; Niehorster et al., 2020).

As illustrated in the "MET data collection considerations" 
section, there are MET-specific data quality concerns rela-
tive to SET studies due to the less constrained nature of 
MET data collection. After the initial calibration, changes in 
illumination conditions, the distance between the participant 
and AOIs, and disruptions in the detection of pupil locations 
and corneal reflection can introduce errors (Franchak & Yu, 
2022; Niehorster et al., 2020). Indeed, the accuracy and 
precision achieved from the initial calibration may not be 
maintained at the end of the experiment after unconstrained 
movement and headset slippage occurred (Niehorster et al., 
2020; Santini et al., 2018). Compromised data quality could 
bias eye-tracking measurements and lead to false conclu-
sions (Wass et al., 2014). Thus, it is critical to examine 
data quality before data analyses. This section will provide 
strategies for assessing MET data accuracy, precision, and 
data loss based on published definitions (Franchak & Yu, 
2022; Hessels & Hooge, 2019; Niehorster et al., 2020). We 
will also discuss strategies to make informed decisions on 
data analyses based on data quality assessments. An addi-
tional pipeline for computing these data quality indices is 
provided in (Hooge et al., 2023). The authors underscored 
the importance of inspecting synchronization between the 
eye and scene camera recordings before computing the data 
quality indices. While some MET systems provide a built-in 
function for synchronization, there could still be intermit-
tent periods of asynchronization between the recordings of 
gaze and target location, which will bias the accuracy index 
(Hooge et al., 2023).

Accuracy

One off-the-shelf tool for calculating accuracy is Glasses-
Validator (Niehorster et al., 2023; Table 1). GlassesValida-
tor is suited for data collection with adults and older chil-
dren, as participants are required to look at fixation targets 
displayed on the poster that is included with the tool. The 
computation is automated and does not require manual 
annotations. Briefly, the poster contains arrays of ArUco 
markers (i.e., barcodes) that allow automated estimation 
of the participant’s viewing distance and gaze location. A 
fixation classifier is applied to determine the valid fixation 
(> 50-ms duration) towards each fixation target. Accuracy 
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is calculated as the deviation between the fixation target and 
the estimated gaze location in degree of visual angle (i.e., 
the angle between the line from the eye to the fixation target 
and the line from the eye to the gaze location).

We provide an additional tool for calculating the spatial 
offset (in degree of visual angle) between the gaze location 
and the validation target that the participant is directed to 
look at. The tool can be applied to validation recordings 

obtained from adults or older children in the "MET data 
collection with adults and older children in controlled labo-
ratory environments" section and calibrated recordings using 
offline calibration when online calibration is not possible in 
the "MET data collection in infants and toddlers" and "MET 
data collection outside controlled laboratory environments" 
sections. We provide both a MATLAB (https://​github.​com/​
xiaox​uefu/​MET_​metho​ds/​tree/​main/​1.%​20Acc​uracy) and an 

Fig. 1   Screenshots of the graphical user interfaces (GUIs) for accu-
racy calculation. Both the MATLAB tool (A) and R Shiny app (B) 
enable users to annotate the point of gaze (i.e., crosshair) and the tar-
get location (i.e., where the experimenter is pointing). The data are 
then used to compute the spatial offset (in degree of visual angle) 
between the gaze location and the target location. A The MATLAB 
tool takes video inputs. In this example, 25 frames from the valida-
tion session were used for the calculation of accuracy. Based on the 

specifications of Pupil Core eye tracker: fov_x (horizontal field of 
view in degrees) = 82.1, fov_y (vertical field of view in degrees) = 
52.2, fov_res_x (horizontal resolution in pixels) = 1280, fov_res_y 
(vertical resolution in pixels) = 720. The average spatial offset across 
these frames is 0.766°. B The R Shiny app uses frames extracted from 
the video recordings. The blue box (edited) represents the region 
between the gaze and the target location. Detailed instructions are 
provided on https://​github.​com/​JohnF​ranch​ak/​et_​accur​acy

https://github.com/xiaoxuefu/MET_methods/tree/main/1.%20Accuracy
https://github.com/xiaoxuefu/MET_methods/tree/main/1.%20Accuracy
https://github.com/JohnFranchak/et_accuracy
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R Shiny app version of the tool (https://​john-​franc​hak.​shiny​
apps.​io/​Eye-​Track​ing-​Accur​acy-​Calcu​lator/). The spatial off-
set computation method is based on the definition described 
in Franchak and Yu (2022). Figure 1 displays the MATLAB 
graphical user interface (GUI) and R Shiny app for obtain-
ing the spatial offset. The user can annotate target and gaze 
locations in the MATLAB GUI or the R Shiny app. Both 
versions of the tool will compute the spatial offset for each 
frame based on user-specified target and gaze locations, the 
scene camera FOV and resolution specifications provided 
by the manufacturer. A lower spatial offset indicates better 
accuracy.

Participant-specific accuracy values are recommended for 
use in scientific reports and making analytical decisions. 
Participant-specific accuracy is likely to be worse (i.e., larger 
spatial offset) than manufacturer-reported values (Franchak 
& Yu, 2022; Niehorster et al., 2020; Santini et al., 2018). 
Participant-specific accuracy is used to evaluate whether it 
is valid to determine looking towards AOIs specified for 
the study. The experimenter should determine the accuracy 
required to distinguish looking between AOIs. When view-
ing AOIs at a comparable distance as the validation target, 
the radius of the AOI, or the distance between two AOIs, 
should not be smaller than the distance between the target 
location and the actual point of gaze measured during vali-
dation. If the participant-specific accuracy is lower than 
required, data from the participant may be excluded or the 
AOI(s) may be adjusted for the participant. For example, 
the experimenter will determine looking to the person rather 
than the person’s face for participants with lower accuracy.

Precision

Precision can also be operationalized as the root mean 
squared error (RMSE) of sample-to-sample deviation 
when a participant is assumed to fixate at the same location 
(Hessels & Hooge, 2019; Niehorster et al., 2020). A larger 
RMSE value indicates higher sample-to-sample deviation, 
thus lower precision (Hessels & Hooge, 2019; Niehorster 
et al., 2020). GlassesValidator (Niehorster et al., 2023) pro-
vides precision indices using gaze points that are directed 
at the fixation targets on the poster provided with the tool. 
We provide a MATLAB program (https://​github.​com/​xiaox​
uefu/​MET_​metho​ds/​tree/​main/​2.%​20Pre​cision) for cal-
culating sample-to-sample RMSE based on the published 
definition (Hessels & Hooge, 2019; Niehorster et al., 2020). 
The expected input data are x- and y-coordinates of gaze 
points when the participants were instructed to look at the 
same location (i.e., a target object), such as during a calibra-
tion procedure. User-input parameters are the scene camera 
specifications, the size of the target object, and the distance 
between the participant and the targe object.

Less precise gaze data bias the parcellation of fixations 
and saccades, as they may erroneously suggest shifts in gaze 
locations when in fact the gaze remains stable (Wass et al., 
2013, 2014). To minimize the impact of low precision, larger 
AOIs can be defined to allow for more error margins. In 
addition, data analysis can be less dependent on fixation or 
saccade categorization by computing the duration of con-
tinuous looking toward an AOI (further discussed in the 
"Gaze annotations").

Data loss

Data loss can be computed the proportion of data loss (the 
total amount of valid data points expected to be sampled 
based on the sampling frequency of the MET device minus 
the number of valid data points collected) over the total 
amount of expected data points (Niehorster et al., 2020). 
Data loss can occur when the eye tracker fails to detect the 
corneal reflection or pupil (Wass et al., 2014). This can be 
caused by blinking, lighting, eye camera being moved out 
of alignment, or other eye tracker technical errors. Hence, 
with more data loss, shorter durations of AOI looking could 
be caused by MET failing to detect eye gazes, rather than 
the participant not looking at the AOI (Wass et al., 2014). 
Hence, to accurately quantify AOI looking, it is important to 
measure the amount of both valid and invalid MET data. The 
amount of AOI looking can then be indexed as the propor-
tion of time looking at the AOI over the total amount of valid 
MET data recorded (rather than the total recording duration).

Gaze annotations

Automated annotations

One challenge in processing MET data is fixation classifi-
cation. During MET data collection, the participant moves, 
the AOI moves, or both move in a three-dimensional space. 
Hence, it is challenging to classify different types of gaze 
events, including fixations, saccade, and gaze pursuit. For 
example, during a bout of fixation, the AOI being fove-
ated moves when the participant’s head moves. Classifier 
algorithms are available for automatic fixation detection 
(GazeCode: Benjamins et al., 2018; Kothari et al., 2020; 
Table 1). While the classifiers yielded substantial agree-
ment with human coders, it remains challenging to accu-
rately classify gaze pursuit, defined as the tracking of an 
AOI moving across the scene camera view (Kothari et al., 
2020). However, differentiating fixations from other gaze 
events or counting the number of fixations might not be the 
key aims of most MET studies. Depending on the research 
questions, it might be sufficient to measure the proportion 

https://john-franchak.shinyapps.io/Eye-Tracking-Accuracy-Calculator/
https://john-franchak.shinyapps.io/Eye-Tracking-Accuracy-Calculator/
https://github.com/xiaoxuefu/MET_methods/tree/main/2.%20Precision
https://github.com/xiaoxuefu/MET_methods/tree/main/2.%20Precision
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of time, or frames during which, the gaze was directed to an 
AOI (Franchak & Yu, 2022). This dependent variable can be 
computed using either manual annotations by human coders 
or automated classifiers.

Another challenge in MET gaze annotation is identify-
ing the AOI being foveated (Brône et al., 2011. The AOI 
coordinates need to be defined in the participant-specific 
egocentric space. They also need to be defined frame-by-
frame as the AOI’s appearance can change due to motion, 
viewing perspectives, and occlusion. Researchers have tradi-
tionally conducted manual AOI annotations (e.g., Franchak 
& Adolph, 2010; Franchak et al., 2011). The development 
of open-source deep learning algorithms has made it pos-
sible to automate AOI identification. Off-the-shelf computer 
vision algorithms enable automated detection of human 
faces and bodies in the scene camera view. Once the AOIs 
(e.g., bounding boxes for faces) are specified, an additional 
procedure is applied to map the gaze locations (synchronized 
with the scene camera recordings) to the AOIs (Duchowski 
et al., 2019; Gehrer et al., 2020; Hessels et al., 2022; Hes-
sels, Benjamins et al., 2020a; Jongerius et al., 2021). Jonge-
rius et al. (2021) found high agreement (Cohen’s kappa ≥ 
.89) between automated annotation of face looking using 
OpenPose (Cao et al., 2017) and manual annotations by 
trained coders.

However, computer vision AOI detection can be more 
challenging for addressing certain research goals than oth-
ers. A common application has been detecting faces in 
MET recordings collected during laboratory-controlled 
face-to-face interactions (Duchowski et al., 2019; Gehrer 
et  al., 2020; Haensel et  al., 2022; Hessels, Benjamins 
et al., 2020a; Jongerius et al., 2021). In contrast, Long 
et al. (2022) applied OpenPose to head-mounted camera 
recordings obtained from infants during parent–infant free 
play of toys to detect parents’ wrists as an index of hand 
presence, as hands are often occluded by the toys. They 
found more misses in detecting the presence of hands 
than faces. OpenPose detection of human figures is more 
challenging during unrestrained locomotion when the dis-
tance between the wearer and the AOIs varies moment-to-
moment (Hessels, Benjamins et al., 2020a). Furthermore, 
additional training on deep learning models using manu-
ally annotated data is required when the AOIs are novel 
and/or complex objects (e.g., toys; Bambach et al., 2016). 
Together, automated AOI annotations are faster and can 
be more objective than manual annotations (Jongerius 
et al., 2021). The increased data processing compacity can 
advance our knowledge about the characteristics of visual 
inputs in the natural environment (Smith & Slone, 2017). 
However, off-the-shelf computer vision algorithms might 
not be applicable to all detection tasks. They are also not 
error-free. Depending on the task requirement and error 
tolerance, manual annotations might still be necessary 

for providing training datasets (Bambach et al., 2018) or 
to complement the automated detection (Haensel et al., 
2022).

Manual annotations

Manual annotations of AOI looking remains the most acces-
sible and robust method for data generation especially for 
developmental MET applications (Franchak & Yu, 2022). 
Manual AOI annotations are flexible. As discussed above, it 
might be a necessary procedure for annotating complex and 
irregular AOIs. Manual annotations can also be applied to 
additional events and behaviors that take place simultane-
ously. Manual annotations are accessible, as it can be carried 
out in any open-source annotation software, including Data-
vyu (Datavyu, 2014), ELAN (ELAN, 2018), and BORIS 
(Friard & Gamba, 2016). Indeed, manual annotations have 
been widely implemented in studies using a variety of MET 
systems with both adult (e.g., Laidlaw et al., 2011; Rogers 
et al., 2018) and child samples (e.g., Franchak et al., 2011; 
Fu et al., 2019; Woody et al., 2019).

There are two approaches to manual annotations of AOI 
looking events. One method is manually annotating AOI 
looking events based on the gaze overlay video entered into 
annotation software. Researchers may implement a cut-off 
duration to exclude short looks. For example, an event of 
continuous looking is conventionally defined as looking at 
the AOI for two or three successive video frames at 30 Hz, a 
duration of 66.7 to 99.9 ms (e.g., Franchak & Adolph, 2010; 
Franchak et al., 2011). The second approach is to apply fixa-
tion classifier algorithms to segment the gaze overlay videos 
into frames based on the detection of stable gazes. Then 
trained human coders annotate the AOI(s) being looked at 
in the video segments (e.g., Yurkovic-Harding et al., 2022; 
Yurkovic et al., 2021). We provide a MATLAB-based ROI 
coder program (https://​github.​com/​JohnF​ranch​ak/​roi_​coder) 
that aids manual AOI annotations. The computer-program-
guided approach can help reduce coders’ cognitive effort and 
thus reduce human error.

A well-designed gaze annotation manual helps to ease 
the burden of manual annotations, reduce human errors and 
biases, and enhance inter-coder reliability. The manual con-
tains descriptions of each code and instructions for the cod-
ers on how to score the looking behavior and any additional 
event of interest. For the looking behavior code, the manual 
defines the AOI codes (e.g., “b” = body looking) and pro-
vides instructions for annotating the onset and offset time 
of a bout of continuous look to the AOI. Adding to existing 
guidance (Franchak & Yu, 2022; Slone et al., 2018), we 
provide best practices for manual annotation of AOI looking 
events. Best practices for annotating general behavioral data 
can be accessed at https://​datav​yu.​org/​user-​guide/​best-​pract​
ices.​html.

https://github.com/JohnFranchak/roi_coder
https://datavyu.org/user-guide/best-practices.html
https://datavyu.org/user-guide/best-practices.html
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1)	 Create visual aids for manual annotations. Research-
ers can superimpose a bullseye on the gaze overlay video 
to indicate gaze location in addition to the crosshair that 
presents the point of gaze. The size of the circle can be 
set based on the tolerance of accuracy for manual anno-
tations. We provide a MATLAB program (https://​github.​
com/​xiaox​uefu/​MET_​metho​ds/​tree/​main/​3.%​20Gaze%​
20Cod​ing%​20Err​or%​20Tol​erance) for estimating the 
visual angle of circles in the bullseye (i.e., error toler-
ance). An example of error margin setting is provided 
in Fig. 2 (also see Franchak & Yu, 2022 Fig. 4B). Addi-
tionally, the gaze overlay video must be synchronized 
with additional sources of video recordings, such as 
room cameras. The composite video displays the partici-
pant’s behavior from multiple angles and perspectives, 
thus allowing coders to use contextual information to 
determine gaze shifts and locations (Slone et al., 2018).

2)	 Downsize data to code based on research questions. 
Manual annotations can be selective, given the large 
volume of MET data collected and the time-intensive 
processing of manual annotations. AOI looking events 
can be coded only during events of interest, instead of 
the entire recording (e.g., Franchak & Adolph, 2010). 
Another data-reduction method is to down-sample video 
frames. The typical sampling frequency of the scene 
camera is from 30 to 120Hz. For example, a 5-min 
recording could provide a range of 9000 to 36,000 
frames to code. Based on initial inspections of the data, 

researchers can choose to resample the recordings to a 
lower frequency if AOIs are relatively big and sparse 
and gaze shifts within AOIs are not a primary interest of 
annotations. Researchers can code short segments from 
several participants at both resampled and the original 
frequency to make sure that the reduced frame rate does 
not bias the percentage scores of looking durations.

3)	 Annotate valid and invalid AOI looking events and 
data. Researchers should compute proportion scores of 
accumulated AOI looking durations, with the total valid 
AOI looking duration as the denominator. This strategy 
is to reduce biases produced by data loss (discussed in 
the "Data loss" section) and allow for comparisons of 
accumulated looking durations across AOIs. Thus, in 
addition to annotating valid AOI looking events (i.e., 
continuous looking exceeding a threshold duration), 
coders should annotate frames with invalid AOI look-
ing (e.g., looking duration below the threshold) and data 
loss (i.e., no visible point of gaze).

4)	 Code-check-revise-check. Manual annotations are an 
iterative process. After a preliminary annotation plan is 
conceived, researchers should conduct test annotations 
of representative recording segments from different par-
ticipants. This is to make sure that the data generated can 
address research questions and that satisfactory inter-
rater reliability can be easily achieved. Researchers can 
then go back to revise the annotation methods before 
annotating the entire recordings. After formal annotation 

Fig. 2   Video frames taken from the validation (left) and task (right) 
procedures. Calibration accuracy needs to be estimated before gaze 
annotations. Gaze annotations that are based on the red circle allow 
reliable determination of the area of interest (AOI) for error within 

2.6°. For example, looking to the researcher would be identified for A 
but not B. The yellow circle allows for an error tolerance of 6.6°. In 
such case, looking to the researcher would be annotated for B 

https://github.com/xiaoxuefu/MET_methods/tree/main/3.%20Gaze%20Coding%20Error%20Tolerance
https://github.com/xiaoxuefu/MET_methods/tree/main/3.%20Gaze%20Coding%20Error%20Tolerance
https://github.com/xiaoxuefu/MET_methods/tree/main/3.%20Gaze%20Coding%20Error%20Tolerance
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protocol is launched, researchers should periodically 
check reliability to detect and resolve significant dis-
crepancies between coders. Percentages of inter-coder 
agreement and kappa values need to be calculated for 
reliability assessment and scientific reports.

Data visualization

The gaze annotation step produces a long-format dataset 
that contains time series of annotated looking events. For 
example, each row may contain information, such as onset 
time, offset time, and the AOI. In addition to AOI looking 
events, Researchers may have coded other events, such 
as motor activities recorded from the room camera. The 
multiple types of events, which may be generated from 
the same individual but different modalities (e.g., looking 
events and motor behavior), and/or from the same modal-
ity but different individuals (e.g., looking events from two 
individuals during a dyadic interaction). Data visualiza-
tion is a critical step for exploring the temporal charac-
teristics of AOI looking events from an individual and/or 
the temporal relations between two or more data streams 
(e.g., time series of AOI looking and motor behavior). 
This section will demonstrate the methods and utility of 
data visualization. The example data and the programs 
for producing the visualization are shared with the paper.

Example 1 (iTRAC): Visualize individuals’ looking 
behavior nested in dyadic interactions

Visualizations inform the temporal dynamics of a child’s 
looking behavior nested in dyadic interactions. Figure 3 
(https://​github.​com/​xiaox​uefu/​MET_​metho​ds/​tree/​main/​
4.%​20Vis​ualiz​ation/​Figur​e3) presents data collected from 
a parent–child dyad as they completed a series of chal-
lenging tangram puzzles (MacNeill et  al., 2022). The 
visualization explores the child’s gaze patterns as the 
parent displays various types of parenting behavior (char-
acterized as positive reinforcement, teaching, directives, 
and intrusion). Figure 3A is plotted using the MATLAB 
toolbox timevp (https://​github.​com/​xiaox​uefu/​timevp; Yu 
et al., 2012) to show how an individual child’s AOI look-
ing events and parenting behavior co-evolve during the 
task. It shows that there are more teaching behaviors at 
the beginning of the puzzle task for the dyad. As the time 
pressure increased as part of the task design, there are 
more directives and positive reinforcement towards the end 
of the task. Bouts of looking to the parent become shorter 
in the second half of the task.

State space grids (SSGs) provide a tool to display how 
dyadic behaviors vary over time by plotting how members 

of the dyad move within a figurative space (Hollenstein, 
2013; Lewis et al., 1999). Tutorials for using GridWare 
(https://​www.​queen​su.​ca/​psych​ology/​adole​scent-​dynam​
ics-​lab/​state-​space-​grids; Lamey et al., 2004) are provided 
in Hollenstein (2013). Figure 3B demonstrates the utility of 
SSGs for depicting the temporal dynamics between child 
looking behavior and parenting behavior. The AOI catego-
ries of the child looking events and the types of parenting 
behaviors form a 5 × 4 grid (i.e., 20 possible dyadic states). 
We examined the dyad attractor patterns, or states that pull 
the dyadic system from other states under particular con-
ditions (Thelen & Smith, 1998). GridWare can be used to 
identify attractors by calculating the average mean duration 
for a predefined grid sequence, or the average of individual 
cell means of interest. We characterized attractor strength 
in parent-focused/controlling parenting states (i.e., the 
child is looking at the parent while the parent is engaging in 
directive and intrusive behaviors). In the example, the dyad 
spent 26.6% of the time, for a total of 37.49 s, in the parent-
focused/controlling-parenting states (highlighted in yellow). 
The average mean duration in these states is 0.85 seconds. 
Additionally, SSGs help visualize and quantify the patterns 
of temporal sequence and transition across states (Hollen-
stein et al., 2004). The level of transition across states, or 
dyadic flexibility in this example, is indexed by the number 
of cells visited, the number of transitions, dispersion (0 to 
1), and transitional entropy (Lewis et al., 1999), with higher 
values indicating higher flexibility. The example dyad visited 
nine cells, made 186 transitions across cells, had a disper-
sion of 0.83, and an entropy value of 42.22 from looking at 
the puzzle as the parent engaged in teaching to looking to 
the parent’s reference as the parent engaged in directive and 
intrusive behaviors.

Example 2 (ACTION): Visualize the coordination 
of multimodal behaviors in triadic parent–infant–
object interactions

Visualization helps generate higher-order constructs that 
are defined based on the temporal relations of two or more 
event types. An example of such construct is joint atten-
tion (JA), the ability to coordinate attention with a social 
partner to an object or event of interest (Tomasello & Far-
rar, 1986). JA can be measured as the temporal alignment 
when two individuals are looking at the same object during 
triadic interactions (i.e., child–parent toy play). Visualizing 
moment-to-moment temporal relations between looking and 
bodily behaviors in the dyads over the course of interac-
tion helps (1) identify the occurrence of JA and (2) inform 
the emergence and impact of JA in real time as the interac-
tion unfolds (Yu & Smith, 2013, 2016, 2017a, 2017b; Yu 
et al., 2019. Figure 4 (https://​github.​com/​xiaox​uefu/​MET_​
metho​ds/​tree/​main/​4.%​20Vis​ualiz​ation/​Figur​e4) displays 

https://github.com/xiaoxuefu/MET_methods/tree/main/4.%20Visualization/Figure3
https://github.com/xiaoxuefu/MET_methods/tree/main/4.%20Visualization/Figure3
https://github.com/xiaoxuefu/timevp
https://www.queensu.ca/psychology/adolescent-dynamics-lab/state-space-grids
https://www.queensu.ca/psychology/adolescent-dynamics-lab/state-space-grids
https://github.com/xiaoxuefu/MET_methods/tree/main/4.%20Visualization/Figure4
https://github.com/xiaoxuefu/MET_methods/tree/main/4.%20Visualization/Figure4
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a representative segment of the MET data stream from 
an 8-month-old. The timevp toolbox is used to plot events 
of interest. The top two rows display raw gaze annotation 
data of AOI looking events from the infant and his mother. 
Consistent with existing findings, the infant rarely looked 
at the social partner (and did not look at the face) during 

toy play compared to the parent (e.g., Abney et al., 2020; 
Yu & Smith, 2017a). The third row presents bouts of JA 
of the toys. For data exploration, we include shorter bouts 
of JA (between 0.3 and 0.5 s) than Yu and Smith (2017a) 
considering that the dyad is given a larger variety of toys to 
play with than the more controlled laboratory setting. The 

Fig. 3   Child–mother dyadic looking behavior nested in parenting 
behavior. Data are collected from a mother–child dyad as they com-
pleted a challenging puzzle task. A Screenshot of the composite video 
used for gaze annotation is displayed in the top panel. The child’s 
area of interest (AOI) looking events and parent behavior are plotted 
using the timevp MATLAB toolbox. White gaps in behavior represent 
missing child looking behavior (e.g., indeterminate looking or data 
loss) or parenting behavior (e.g., comforting) that occurred but are 

not of interest. B State space grids (SSGs) depicting the child’s AOI 
looking event and parent behavior. Each node represents the event 
when both AOI looking and target parent behavior are co-occurring. 
The size of the nodes represents the length of time spent in each 
state. Lines between nodes denote changes from one dyadic state to 
the next. Dotted lines connect event nodes prior to missing events to 
nodes that follow the missing events. The yellow box labels the par-
ent-focused/controlling-parenting state
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last four rows represent the four combinations of with- and 
across-individual attention-motor coordination. The three 
vertical boxes highlight example CVA bouts that emerged 
when either the partner was holding the toy or both. Consist-
ent with published MET findings (Yu & Smith, 2013, 2017a, 
2017b), the figure shows that JA bouts emerge in the context 
of infant–parent attention-motor coordination.

Data analysis

Statistical analysis with aggregated scores

Informed by data visualization, looking event data can be 
aggregated by AOI and task condition for each participant 
for subsequent data analysis. Examples of these aggregated, 

high-order measures include those computed based on the 
individual’s AOI looking events, such as the number of AOI 
looks (e.g., Fu et al., 2019; Woody et al., 2019), the temporal 
characteristics of an individual’s AOI looking events, such as 
sustained attention, defined as AOI looks that are longer than 
3 s (e.g., Yu et al., 2019), and the temporal relations of two 
individuals’ AOI looking events, such as JA (e.g., Yu et al., 
2019). Statistical analysis methods, such as Pearson correla-
tion, linear regression, analysis of variance (ANOVA), and 
linear mixed effects modeling, can be applied to the aggre-
gated measures. The distribution of the looking behavior 
measure needs to be carefully inspected so that appropriate 
data transformation and statistical modeling methods can 
be selected for non-normally distributed outcome variables.

Several published studies have used analytical strate-
gies using aggregated measures computed based on data 

Fig. 4   Coordination of looking behavior and manual manipulation of 
toys between an infant–mother dyad during a segment of free-flowing 
toy play session. A screenshot of the composite video frame used for 
gaze annotation is displayed in the top panel. Data were plotted using 
the timevp MATLAB toolbox. The areas of interest (AOIs) for look-
ing behavior are body, face, infant, and mother self-looking and four 
toy objects. The AOIs for manual manipulation are the toys. White 
spaces denote events that do not involve the AOIs. The first two rows 

depict raw data from gaze annotation of AOI looking events in the 
infant and his mother. The third row displays bouts of joint attention 
(JA), defined as a period (> 0.3  s) when the dyad is looking at the 
same toy. When the individual is looking at the same toy as the social 
partner, gaps that last fewer than 0.3  s in consecutive looks of the 
same AOI are disregarded (e.g., the first bout of toy looking displayed 
in teal). The last four rows show the four types of attention-manual 
coordination within each individual and across the dyad
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visualization (e.g., Abney et  al., 2020; Fu et  al., 2019; 
MacNeill et al., 2022; Suarez-Rivera et al., 2019; Woody 
et al., 2019; Yu & Smith, 2016). For example, using SSGs, 
MacNeill et al. (2022) examined dyadic states based on co-
occurrence of child looking at specific AOIs and designated 
parenting behavior types (e.g., Fig. 4). Dyadic states were 
combined to generate two types of attractors: task-focused/
positive parenting states and parent-focused/controlling par-
enting states. Attractor strength, the average mean duration 
that the child–parent dyad visited each of the two states, 
is computed. To account for the positive skewness of the 
attractor strength measures, a generalized linear model 
with gamma distribution and a log link (Breen, 1996) is 
fitted to test whether child age, behavioral inhibition, and 
parent anxiety symptoms predicted the attractor strengths. 
The results reveal that child age and parent anxiety levels 
jointly predicted parent-focused/controlling parenting attrac-
tor strength.

In another example, Suarez-Rivera et al. (2019) exam-
ined the impacts of parent speech and parent manual object 
manipulation during bouts of JA on infant sustained atten-
tion towards the objects during toy play. For each infant, 
mean proportion scores are computed on infant looking 
events that feel into five categories defined based on the tem-
poral alignment of multimodal measures: infant looking to 
the toy without JA, JA with no additional parent behaviors, 
JA with parent touch of the toy, JA with parent speech, and 
JA with both parent touch and talk. The resulting mean pro-
portion scores of infant looks are log-transformed to account 
for the positive skewness. A linear mixed effect model is 
fitted with the transformed scores as the outcome, event cat-
egories as the fixed effect, and random intercepts specified 
to account for individual differences in the durations of the 
looking events. The results indicate that infants’ looking to 
the objects is longest (i.e., greater sustained attention) during 
bouts of JA that include both parent touch and speech. The 
aggregated summary scores effectively characterize impor-
tant behaviors in individuals or dyads. However, analyses 
with aggregated measures may obscure within-subjects tem-
poral effects that describe how looking behavior changes 
over time.

Statistical analysis to model the temporal dynamics 
of looking events

MET produces a high-density repeated sampling of gaze 
locations over a prolonged period of data collection, pro-
viding a unique opportunity for examining the temporal 
dynamics of looking behavior. The location and duration of 
looking behavior change over time within an individual in 
response to internal and/or external influences. The inten-
sive longitudinal data analysis (Bolger & Laurenceau, 2013) 
and dynamic systems modeling (Ram & Gerstorf, 2009) 

approaches provide statistical tools for understanding the 
patterns and dynamics of intraindividual changes in micro- 
(e.g., in seconds) and macro-timescales (e.g., in years), 
investigating factors that modulate the temporal dynamics, 
and characterize groups of individuals based on the trajec-
tories of changes. The modeling methods have been widely 
implemented using behavioral observation and self-report 
data (e.g., Benson et al., 2019; Cole et al., 2020; Morales 
et al., 2018; Shewark et al., 2020), whereas applications to 
MET data are limited. However, there is increasing emphasis 
on a spline-based approach (e.g., Li et al., 2015) to model 
moment-to-moment nonlinear time-varying effects on AOI 
looking events (Yamashiro et al., 2019).

Emerging MET studies have modeled interindividual 
differences in within-subjects temporal trajectories of AOI 
looking behavior. For example, Gunther et al. (2021) mod-
eled second-by-second changes in looking behavior towards 
a stranger wearing a gorilla mask in 5- to 7-year-olds. Fig-
ure 5 (https://​github.​com/​xiaox​uefu/​MET_​metho​ds/​tree/​
main/​5.%​20Data%​20Ana​lysis%​20-%​20Gro​wth%​20Mod​
el) shows that the looking behavior is characterized by a 
quadratic trajectory (i.e., inverted U-shape) over the period 
of exposure. Moreover, Gunther et al. (2021) found a main 
effect of child behavioral inhibition. As time elapsed while 
the stranger had the mask on, higher levels of behavioral 
inhibition were related to a greater proportion of looking 
toward the stranger. Hence, individual differences in the 
temperament type shape how looking behavior unfolds over 
time. Furthermore, in an overlapping sample, Gunther et al. 
(2022) characterize latent profiles of children based on time-
varying trajectories of looking behavior towards a stranger. 
The stranger pretended to do paperwork without initiating 
interaction with the child, while also holding the marbles 
that the child needed to play a game. Similarly, children’s 
looking behavior exhibits quadratic trajectories over time. 
Group-based trajectory models (GBTM, Nagin & Odgers, 
2010) are fitted to identify latent profiles underlying indi-
vidual quadratic trajectories. The results indicate that 30.2% 
of children belong to the “orienting” group, characterized by 
high initial orienting to the stranger and gradual decay. The 
rest of the sample is categorized as the “avoidant” group 
who displays low initial orienting to the stranger and con-
tinued low attention. Importantly, individuals’ probability 
of being characterized with the “avoidant” trajectory pre-
dicts variance of internalizing symptoms over and above 
the aggregated measure of looking towards the stranger. 
Together, modeling temporal dynamics of looking events 
may reveal important insights about underlying mechanisms 
(Cole et al., 2020) and enables better characterization of 
individual differences (Gunther et al., 2022; Shewark et al., 
2020).

https://github.com/xiaoxuefu/MET_methods/tree/main/5.%20Data%20Analysis%20-%20Growth%20Model
https://github.com/xiaoxuefu/MET_methods/tree/main/5.%20Data%20Analysis%20-%20Growth%20Model
https://github.com/xiaoxuefu/MET_methods/tree/main/5.%20Data%20Analysis%20-%20Growth%20Model
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Future directions

We expect to see continuous development in MET hardware 
that enables MET applications to more diverse samples and 
data collection environments. Next-generation eye trackers 
(e.g., Tonsen et al., 2020) are being designed to be calibra-
tion-free and more robust to factors that reduce data quality 
(Niehorster et al., 2020; Valtakari et al., 2021), including 
participant movement, headset slippage, and changes in 
ambient lighting. This hardware improvement enables data 
collection outside the laboratory with participants who have 
difficulties with online calibration and lower tolerance for 
the headset. For example, published work has successfully 
collected MET data for over an hour per session (equivalent 
to the battery life of the smartphone used for data record-
ing) in toddlers (27- to 31-month-old) as they go about their 
daily lives at home (Schroer et al., 2022). Future hardware 
development would benefit from data quality evaluations 
(e.g., Niehorster et al., 2020) in wider age ranges, clinical 
populations, and both indoor and outdoor environments.

The increased ease of MET data collection facilitates 
multimodal research that examines physiological and neu-
ral activities concurrently as participants actively attend 
to external stimuli (Valtakari et al., 2021). An example 
is to combine MET with functional near-infrared spec-
troscopy (fNIRS) recording (von Lühmann et al., 2020). 
fNIRS is a noninvasive neuroimaging tool that measures 
event-evoked changes in cerebral blood oxygenation. As 
with electroencephalogram (EEG), fNIRS is well suited 

for applications in a wide age range (Vanderwert & Nelson, 
2014). A key advantage of fNIRS is that robust signals can 
be obtained even in free-moving participants (e.g., Burgess 
et al., 2022; Herold et al., 2017). Recent advances in wear-
able and portable fNIRS devices provide the opportunity 
to record neural activities in a variety of indoor and out-
door environments as participants actively interact with the 
environment (Pinti et al., 2020). However, one barrier for 
the multi-modal data acquisition is signal interference of 
fNIRS recording, as the eye tracker may emit near-infrared 
light at a wavelength that can be detected by fNIRS sen-
sors. A specially designed cover for the fNIRS headset is 
needed to prevent interference (Katus et al., 2019).

MET facilitates research progress in understanding the 
moment-to-moment unfolding of behavioral and cognitive 
processes and how those micro-level processes dynami-
cally interact with environmental factors at the macro-level 
over time. Individuals’ multisensory development, includ-
ing attention and motor abilities, reciprocally influence the 
individuals’ social and physical environment throughout 
the course of human development (Smith et al., 2018). 
Perturbations in moment-to-moment looking behavior 
and attention-motor coordination can cast downstream 
impacts over time and across multiple levels of function-
ing. MET data collections have been largely implemented 
in cross-sectional studies, while we know that there are 
considerable changes in attention and motor functions in 
the lifespan (e.g., Mason et al., 2019; Reider et al., 2022; 
Vallesi et al., 2021). Incorporating MET measurements 

Fig. 5   Visualization of the growth curve modeling examining atten-
tion to a stranger during the period when the stranger was wearing 
a scary mask (left panel) and when the stranger took off the mask. 
The visualizations are presented in Figs.  2 and 4 of Gunther et  al. 
(2021). The quadratic trajectory yielded a better fit than a linear tra-

jectory (BIC for a linear fit was 1395.65; BIC for a quadratic fit was 
1324.34). The black lines show the model-estimated quadratic tra-
jectory for individual participants. The red line displays the average 
quadratic trajectory
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in participants’ naturalistic environment in longitudinal 
designs can deepen our understanding of how psychologi-
cal functions that operate in micro-timescales develop with 
age and give rise to long-term impacts.

Conclusion

MET allows researchers to sample first-person gaze behav-
ior in the context of ongoing external events, the individ-
ual’s behavior, and psychological processes (Hayhoe & 
Rothkopf, 2011). Commercially available MET hardware 
allows users to collect good quality data from participants 
with a wider age range, in various environments, and for 
longer periods (Franchak & Yu, 2022; Pérez-Edgar et al., 
2020). However, challenges in maintaining data quality dur-
ing acquisition and the lack of standardized protocols for 
data processing create barriers to applying the technology 
(Hessels, Niehorster et al., 2020b). This paper provides a 
practical guide and open-source tools aimed at addressing 
methodological issues and challenges. This includes maxi-
mizing mobility, ensuring MET data quality, good practices 
in manual gaze annotations, the utility of data visualization, 
and possible data analytical methods. A number of tools 
for MET data quality assessment are readily available. This 
facilitates data quality reporting and data processing. There 
is increased implementation of automated AOI annotations 
with the rapid development of computer vision algorithms. 
However, manual inspections and annotations are indispen-
sable for validating automated AOI annotations and ensure 
AOI annotation accuracy. Finally, we encourage research-
ers to utilize the micro-longitudinal structure of MET data 
to model the temporal dynamics of AOI looking events, in 
addition to the use of between-subjects aggregated indices 
(Ram & Gerstorf, 2009). We hope the practical guide can 
increase the accessibility of MET technology and help to 
enhance the reliability, standardization, and reproducibil-
ity of MET research. In particular, we believe that these 
methodological advances will propel our conceptual and 
theoretical understanding of mechanisms that shape behav-
ior, affect, and cognition in-the-moment and cumulatively 
lay the foundation for long-term or larger-scale patterns of 
functioning.
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